note on degree kirchhoff index of graphs

Authors

mardjan hakimi-nezhaad

ali reza ashrafi

ivan gutman

abstract

the degree kirchhoff index of a connected graph $g$ is defined as‎ ‎the sum of the terms $d_i,d_j,r_{ij}$ over all pairs of vertices‎, ‎where $d_i$ is the‎ ‎degree of the $i$-th vertex‎, ‎and $r_{ij}$ the resistance distance between the $i$-th and‎ ‎$j$-th vertex of $g$‎. ‎bounds for the degree kirchhoff index of the line and para-line‎ ‎graphs are determined‎. ‎the special case of regular graphs is analyzed‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Maximizing Kirchhoff index of unicyclic graphs with fixed maximum degree

The Kirchhoff index of a connected graph is the sum of resistance distances between all unordered pairs of vertices in the graph. Its considerable applications are found in a variety of fields. In this paper, we determine the maximum value of Kirchhoff index among the unicyclic graphs with fixed number of vertices and maximum degree, and characterize the corresponding extremal graph.

full text

Further Results regarding the Degree Kirchhoff Index of Graphs

Let G be a connected graph with vertex set V.G/. The degree Kirchhoff index of G is defined as S .G/D P fu;vg V.G/ d.u/d.v/R.u;v/, where d.u/ is the degree of vertex u, and R.u;v/ denotes the resistance distance between vertices u and v. In this paper we obtain some upper and lower bounds for the degree Kirchhoff index of graphs. We also obtain some bounds for the Nordhaus-Gaddum-type result fo...

full text

On the Kirchhoff Index of Graphs

Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ . . .≥ μn−1 > μn = 0. The Kirchhoff index of G is defined as Kf = Kf(G) = n∑n−1 k=1 1/μk. In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus–Gaddum-type result for the Kirch...

full text

Kirchhoff index of composite graphs

Let G 1 + G 2 , G 1 • G 2 and G 1 {G 2 } be the join, corona and cluster of graphs G 1 and G 2 , respectively. In this paper, Kirchhoff index formulae of these composite graphs are given.

full text

Note on Properties of First Zagreb Index of Graphs

Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.

full text

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

Publisher: university of isfahan

ISSN 2251-8657

volume 2

issue 3 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023